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Resumo 
Este estudo teve como meta validar e evidenciar, na prática, a aplicação da complexidade assintótica 
por meio da análise estática de algoritmos. Para isso, foi desenvolvida uma ferramenta web interativa 
que possibilita a geração e visualização da complexidade de diversos algoritmos, tornando esses 
conceitos teóricos, frequentemente considerados abstratos, mais acessíveis, concretos e passíveis de 
verificação em um contexto prático. A pesquisa abordou desde os fundamentos da teoria da 
complexidade algorítmica, passando pela aplicação de heurísticas de identificação de estruturas de 
controle, até a construção de representações estruturais como Árvores Sintáticas Abstratas (AST) e 
Grafos de Fluxo de Controle (CFG), que serviram de base para a inferência da complexidade. A partir 
dessa fundamentação, foi desenvolvido o sistema Big O Analyzer, utilizando tecnologias modernas 
como Next.js e Monaco Editor, o que permitiu integrar uma interface interativa a um pipeline de 
análise eficiente e modular. O sistema processa trechos de código escritos em linguagens como 
JavaScript, Python e Java, identifica padrões como loops, recursões e divisões de problema e retorna 
a classe de complexidade correspondente, acompanhada de explicações textuais e sugestões de 
otimização. Os resultados mostraram que a aplicação foi capaz de reconhecer corretamente diferentes 
classes de complexidade de O(1) a O(n!) demonstrando consistência com os fundamentos teóricos e 
confirmando a validade da proposta. Além de sua utilidade prática, o projeto apresenta relevância 
acadêmica ao oferecer uma nova abordagem de ensino para o estudo de algoritmos, unindo 
interatividade, visualização e formalismo teórico.  
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Abstract 
This study aimed to validate and demonstrate, in practice, the application of asymptotic complexity 
through the static analysis of algorithms. To achieve this, an interactive web tool was developed that 
enables the generation and visualization of the complexity of various algorithms, making these 
theoretical concepts often considered abstract more accessible, concrete, and verifiable in a practical 
context. The research covered topics ranging from the fundamentals of algorithmic complexity 
theory, the application of heuristics for identifying control structures, to the construction of structural 
representations such as Abstract Syntax Trees (AST) and Control Flow Graphs (CFG), which served 
as the foundation for complexity inference. Based on this groundwork, the Big O Analyzer system 
was developed using modern technologies such as Next.js and Monaco Editor, allowing the 



 

 

integration of an interactive interface with an efficient and modular analysis pipeline. The system 
processes code snippets written in languages such as JavaScript, Python, and Java, identifies patterns 
such as loops, recursion, and problem division, and returns the corresponding complexity class, 
accompanied by textual explanations and optimization suggestions. The results showed that the 
application was able to correctly recognize different complexity classes, from O(1) to O(n!), 
demonstrating consistency with theoretical foundations and confirming the validity of the proposal. 
In addition to its practical usefulness, the project holds academic relevance by offering a new teaching 
approach for the study of algorithms combining interactivity, visualization, and theoretical formalism.  
 
Keywords 
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INTRODUÇÃO 
 

Entre as décadas de 1960 e 1970, a discussão sobre eficiência de algoritmos ganhou estatuto 
formal com a publicação de The Art of Computer Programming, de Donald Knuth, que sistematizou 
fundamentos e ajudou a popularizar a notação assintótica (Big O) como linguagem padrão para 
comparar ordens de crescimento, independentemente de plataforma ou linguagem. Ao mesmo tempo, 
Knuth (1997), enfatizou a utilidade de raciocínios aproximados para fins de comparação: “We often 
want to know a quantity approximately, instead of exactly, in order to compare it to another.”. Esse 
princípio reforça que a notação assintótica privilegia ordens de crescimento sobre constantes e 
detalhes de implementação. Desde então, a notação assintótica firmou-se como padrão de fato para 
medir e comunicar o desempenho de algoritmos na computação moderna. 

Na prática, consolidou-se o uso de microbenchmarks e profiling pós-implementação para 
comparar algoritmos; são úteis, mas sujeitos a vieses de hardware, compilador/JIT e distribuição das 
entradas, o que frequentemente gera leituras parciais. Como lembra Dijkstra (1970), “Program testing 
can be used to show the presence of bugs, but never to show their absence!”, uma advertência que, 
por analogia, vale para desempenho: testes revelam gargalos, não provam a classe de complexidade.  

Por isso, ganhou força a aproximação da análise assintótica ao próprio código via análise 
estática, produzindo estimativas fundamentadas e reprodutíveis que complementam, em vez de 
substituir, a experimentação. Nesse cenário, a análise estática consolidou técnicas e ferramentas que 
extraem propriedades sem executar o programa de AST/CFG a interpretação abstrata e análise de 
fluxo de dados formando uma base sólida para inferência automática de custos assintóticos e 
explicações reproduzíveis. Assim, aproximar a complexidade do próprio código deixa de ser apenas 
uma conveniência didática e torna-se um caminho concreto para padronizar comparações e reduzir 
vieses de medição. Conforme sintetiza a JETBRAINS (2025), a análise estática examina o código 
sem execução, detecta precocemente defeitos e vulnerabilidades e, quando integrada ao CI/CD, atua 
de forma complementar à análise dinâmica. 

A proposta deste artigo é investigar técnicas de análise estática de código para estimar a 
complexidade assintótica de algoritmos. A proposta envolve a construção de um sistema que, a partir 
de trechos de código, gera árvores sintáticas abstratas (AST) e grafos de fluxo de controle (CFG), 
aplicando regras heurísticas para identificar estruturas críticas como recursão, loops aninhados e 
algoritmos de ordenação, fornecendo justificativas detalhadas da classificação obtida. Do ponto de 
vista prático, um sistema desse tipo tem duas aplicações centrais: ensino de algoritmos, ao tornar 
visível a ligação entre estruturas de controle e ordens de crescimento com justificativas locais e 
gráficos; e ecossistema de compiladores e revisão de código, ao fornecer alertas precoces sobre 
potencial degradação assintótica e pistas de otimização ainda na fase de desenvolvimento, sem 
dependência de cargas de teste específicas. 
 
FUNDAMENTAÇÃO TEÓRICA 
 

Com base nos conceitos apresentados, se originou a ideia de criar um sistema web para análise 



 

 

estática de algoritmos. A ideia é utilizar ferramentas modernas e confiáveis, que auxiliem tanto na 
aprendizagem de algoritmos quanto na prática, servindo como um recurso valioso para compiladores.  
Para tanto, foi realizada uma pesquisa minuciosa a fim de se compreender melhor a fundamentação 
teórica e o funcionamento de como se faz a análise de algoritmos em função do crescimento 
assintótico. 
 
Teoria da Complexidade Algorítmica 
 

Podemos nos deparar em algumas ocasiões com problemas e/ou dificuldades de aplicabilidade 
quando trabalhamos com algoritmos, isso é relacionado ao seu tamanho de entrada ou complexidade, 
é de extrema importância compreender a complexidade do algoritmo com o qual estamos lidando. 
Segundo (Cormen et al, 2009): “Algoritmos diferentes criados para resolver o mesmo problema 
muitas vezes são muito diferentes em termos de eficiência. Essas diferenças podem ser muito mais 
significativas que as diferenças relativas a hardware e software.”. Essa ideia demonstra como a análise 
de complexidade é essencial, pois ajuda a deixar de lado detalhes específicos de hardware e 
implementação. Com base nisso, podemos comparar diferentes soluções para o mesmo problema de 
forma clara. 

Nessas circunstâncias, a notação assintótica consolidou-se como princípio de referência para 
descrever o comportamento de algoritmos, do tempo de execução e do consumo de memória à medida 
que o tamanho da entrada cresce. Como citado por Sipser (2013), “The theories of computability and 
complexity are closely related. In complexity theory, the objective is to classify problems as easy 
ones and hard ones; Whereas in computability theory, the classification of problems is by those that 
are solvable and those that are not. Computability theory introduces several of the concepts used in 
complexity theory”, ela também destaca que classificar problemas e algoritmos de acordo com 
diferentes níveis de crescimento é importante para entender o quão difícil eles são por natureza. 

Além disso, é importante considerar que a análise de complexidade se divide em dois 
principais eixos: tempo e espaço. A complexidade de tempo mede a quantidade de operações 
necessárias para concluir a execução de um algoritmo, enquanto a complexidade de espaço mede a 
quantidade de memória utilizada durante o processo. Muitas vezes, existe um equilíbrio entre tempo 
e espaço, conhecido como trade-off, em que o aumento da eficiência temporal pode implicar maior 
consumo de memória, e vice-versa. Essa relação é descrita por (Knuth, 1997) como um dos aspectos 
centrais da eficiência algorítmica, pois qualquer otimização deve considerar ambos os fatores para 
alcançar o melhor desempenho possível.  

(Cormen et al., 2009) ressaltam que as principais classes de complexidade podem ser 
organizadas em categorias específicas, conforme mostrado na Tabela 1. Essa tabela apresenta as 
ordens de crescimento mais comuns, bem como exemplos significativos de algoritmos relacionados. 
Essa classificação ajuda a comparar desempenho e prever escalabilidade à medida que o tamanho 
da entrada cresce. 
 

Tabela 1. Classes de Complexidade Assintótica (Bigocheatsheet, 2013) 
Classe Crescimento Exemplo clássico 

O(1) Constante Acesso direto em vetor 
O(log n) Logarítmico Busca binária 
O(n) Linear Percorrer lista 
O(n log n) Linearítmico Merge Sort 
O(n²) Quadrático Bubble Sort 
O(2ⁿ) Exponencial Backtracking 
O(n!) Fatorial Permutações completas 

 
Além disso, a teoria da complexidade engloba a categorização dos problemas computacionais 

em classes amplas e teoricamente fundamentadas, como P, NP e NP-completo, de acordo com Sipser 
(2013). Os problemas que pertencem à classe P podem ser solucionados em tempo polinomial. Em 



 

 

contrapartida, os problemas da classe NP permitem soluções que podem ser verificadas em tempo 
polinomial, mas ainda não se sabe se todos esses problemas podem ser resolvidos diretamente nesse 
mesmo intervalo de tempo. Essa distinção é fundamental para compreender o que é eficiente ou 
intratável na computação atual, sendo um dos alicerces da análise teórica de algoritmos. 

Assim, a análise assintótica consolida-se permitindo decisões mais racionais sobre qual 
abordagem adotar em diferentes contextos. Como afirmam (Cormen et al., 2009): “Analisar um 
algoritmo significa prever os recursos de que o algoritmo necessita. Ocasionalmente, recursos como 
memória, largura de banda de comunicação ou hardware de computador são a principal preocupação, 
porém mais frequentemente é o tempo de computação que desejamos medir. Em geral, pela análise 
de vários algoritmos candidatos para um problema, pode-se identificar facilmente um que seja o mais 
eficiente. Essa análise pode indicar mais de um candidato viável, porém, em geral, podemos descartar 
vários algoritmos de qualidade inferior no processo.” Essa abordagem mostra que a teoria da 
complexidade algorítmica não é só uma ideia vaga, mas também um guia útil para distinguir entre 
soluções mais eficazes e aquelas que são menos eficientes. 

Tal estrutura pode ser observada na Figura 1, que ilustra graficamente as diferentes ordens de 
crescimento em função do tamanho da entrada. 
 

Figura 1. Gráfico de Complexidade Big-O (Bigocheatsheet, 2013) 

 
 
Heurísticas de Classificação de Estruturas de Controle 
 

A análise da complexidade assintótica pode ser realizada por meio de heurísticas que 
conectam estruturas de controle no código a padrões de crescimento computacional. Essas heurísticas 
funcionam como normas aplicadas que permitem estimar a ordem de complexidade apenas pela 
sintaxe do programa, eliminando a necessidade de fazer cálculos matemáticos tradicionais em muitos 
casos. Conforme a figura 2, essa estratégia é essencial não apenas no ensino de algoritmos, pois torna-
se mais fácil academicamente de se entender, mas também nas ferramentas de análise estática de 
código, que empregam árvores sintáticas e grafos de fluxo de controle para detectar laços, recursões 
e ramificações que afetam o desempenho (Aho et al., 2008).  

Em um modo geral, loops simples representam o primeiro nível de classificação. Estruturas 
de repetição, como for ou while, ao percorrerem a entrada de uma forma linear exibem uma 
complexidade igual O(n), pois cada iteração processa um pedaço que é proporcional ao tamanho da 
entrada (Cormen et al., 2009). A heurística fundamental é: um laço , indicando um 
crescimento linear. 

No próximo nível, loops aninhados indicam a composição multiplicativa do espaço de 
iterações. Por exemplo, dois laços for aninhados até  levam a , já que cada elemento da entrada 
é tratado em combinação com todos os demais. Essa conexão pode ser estruturada em tabelas 
hierárquicas, nas quais cada nível de aninhamento representa uma nova potência de  (Sedgewick e 



 

 

Wayne, 2011). 
Um padrão importante é também a estrutura recursiva. A recursão simples, como no exemplo 

do fatorial, resulta em . Já a recursão do tipo Divide and Conquer, como no MergeSort ou 
QuickSort, segue a relação de recorrência , cuja solução resulta em 

 (Cormen et al., 2009), onde tal resultado é apresentado na figura 3. Isso serve para ilustrar 
a importância das árvores de recursão, que podem ser representadas graficamente para mostrar como 
o problema é dividido de forma sucessiva.  

Além das estruturas iterativas e recursivas, heurísticas também podem ser aplicadas a 
estruturas condicionais e blocos dependentes, que interferem o custo total de execução conforme o 
número de caminhos possíveis. Estruturas condicionais, embora não representem repetição explícita, 
assim como impactam a complexidade ao definir caminhos alternativos de execução. A heurística 
clássica assume o pior caso (o caminho mais custoso) como representativo da ordem de crescimento.  

Em CFGs, esse comportamento é refletido por múltiplos caminhos de controle, da qual união 
determina o limite superior assintótico. Assim, a análise estática tende a aproximar o custo total pela 
soma ou máximo dos fluxos de controle, conforme o modelo de execução adotado. Esse tipo de 
inferência é singularmente relevante em códigos com múltiplas dependências condicionais ou com 
funções que possuem comportamento variável em tempo de execução (LLVM PROJECT, 2018). 

A interpretação das heurísticas também muda dependendo do paradigma de programação.  Em 
linguagens imperativas, o controle de fluxo explícito possibilita estimativas diretas tanto de iteração 
quanto de recursão.  No caso de linguagens orientadas a objetos, a análise deve levar em conta o custo 
das chamadas dinâmicas e o encadeamento de métodos que são herdados.  Em vez de loops, 
encontramos recursões puras e composições de funções em linguagens funcionais, o que exige 
heurísticas para reconhecer padrões como map, reduce ou fold no lugar de loops explícitos.  Essas 
variações ressaltam a necessidade de alinhar o modelo heurístico com o paradigma em questão, a fim 
de obter maior precisão e compatibilidade entre diversos estilos de programação  (Kosinski et al., 
2024). 

Por fim, heurísticas mais detalhadas se concentram em padrões clássicos, como a busca 
binária , loops duplos dependentes  ou algoritmos de tempo exponencial , 
que normalmente envolvem uma combinação exaustiva. A  ordenação desses modelos é um passo  
importante tanto no ensino de algoritmos quanto na prática profissional, pois ajuda a  achar rápido o 
crescimento pela estrutura do código. Desse modo, Sipser (2013) ressalta que a análise do tempo de 
execução e o reconhecimento de problemas intratáveis são fundamentais para compreender os limites 
da computação e situar algoritmos dentro de diferentes níveis de complexidade. 
 

Figura 2. Operações Comuns de Estruturas de Dados (Bigocheatsheet, 2013) 

 
 



 

 

Figura 3. Algoritmos de Ordenação de Arrays (Bigocheatsheet, 2013) 

 
 
Análise Estática de Código (AST/CFG) 
 

A análise estática investiga propriedades do programa sem executá-lo, traduzindo o código-
fonte em representações que tornam explícitas a estrutura e o fluxo lógico. Duas peças centrais são a 
Árvore Sintática Abstrata (AST), que preserva o conteúdo semanticamente relevante do programa, e 
o Grafo de Fluxo de Controle (CFG), que mapeia os caminhos possíveis de execução entre blocos 
básicos, de que modo é exibido na figura 4. Em termos simples, a AST descreve o que o programa é, 
enquanto o CFG mostra como ele pode ser percorrido. Sobre CFG, a documentação do GCC define: 
“The CFG is a directed graph where the vertices represent basic blocks and edges represent possible 
transfer of control flow from one basic block to another.”  Esse par de estruturas, consolidado na 
literatura de compiladores e análise de programas, sustenta estimativas assintóticas por evidenciar 
padrões estruturais que influenciam diretamente o custo (GCC., 2025). 

A partir dessas representações, a ferramenta identifica hierarquias de aninhamento, recursões 
e composições frequentes na AST, enquanto o CFG explicita ciclos e caminhos mutuamente 
exclusivos em condicionais. Essas informações são essenciais para raciocinar sobre limites de 
iteração e composição de custos. Para refinar as inferências sem executar o programa, aplicam-se 
análises de fluxo de dados e a interpretação abstrata, que propagam invariantes, como avançar um 
índice até n ou uma recursão que divide o problema por 2, e permitem construir limites superiores de 
forma sistemática. Na camada estrutural, a forma Static Single Assignment (SSA) e o grafo de 
dependência de controle simplificam o encadeamento de definições e usos e a relação de dominação 
entre blocos, vale lembrar que “LLVM is a Static Single Assignment (SSA) based representation” 
(LLVM PROJECT, 2018). 

No sistema proposto, o pipeline conceitual segue parsing, construção da AST, derivação do 
CFG, análises de dados e controle, aplicação de regras de complexidade e emissão de justificativas. 
A saída é explicável e reprodutível: a classe Big-O, os pontos críticos que a sustentam e as hipóteses 
adotadas sobre o que é n e sobre pior caso. Em implementações modernas de IR em SSA, limitações 
práticas, como custos não visíveis de bibliotecas, polimorfismo e reflexão, ou limites dependentes de 
dados de entrada podem ser tratadas com resumos de custo conhecidos e, quando necessário, com 
intervalos ou anotações do usuário. Na literatura recente, “Static program analysis, or static analysis, 
aims to discover semantic properties of programs without running them.” (RIVAL; YI, 2020).  Além 
disso, há propostas contemporâneas que certificam limites superiores de custo para reforçar a 
reprodutibilidade dos resultados (ALBERT et al., 2025). 
 
 
 
 



 

 

Figura 4. Exemplo de Grafo de Fluxo de Controle (Aho et al., 2008) 

 
 

A análise estática de código é um campo consolidado na engenharia de software e na teoria 
da computação, fundamentado em métodos formais que examinam o comportamento potencial de um 
programa a partir de sua estrutura sintática. Diferentemente da análise dinâmica, que depende da 
execução e das condições de entrada, a análise estática utiliza modelos abstratos para deduzir 
propriedades determinísticas e reprodutíveis, como alcance de variáveis, dependências de controle e 
limites de iteração (Nielson et al., 1998). 

Entre as técnicas mais recorrentes estão a interpretação abstrata e a análise de fluxo de dados, 
que permitem inferir estados possíveis do programa por meio da propagação de informações entre 
blocos básicos. A interpretação abstrata, proposta por Cousot (1977), oferece uma estrutura 
matemática para representar o comportamento do código em domínios simplificados como intervalos, 
sinais ou contadores de iteração garantindo que as conclusões obtidas sejam seguras, ainda que 
aproximadas. Isso a torna ideal para inferir limites assintóticos de laços e recursões, já que o objetivo 
não é calcular um resultado exato, mas determinar o crescimento relativo das operações em função 
do tamanho da entrada. 

O uso combinado de AST e CFG constitui a base prática dessas análises. A AST fornece a 
estrutura. No ciclo de vida moderno, a análise estática é frequentemente automatizada em CI/CD, 
executando em cada commit para manter qualidade, segurança e desempenho com feedback rápido à 
equipe, ferramentas como o Qodana (JetBrains) documentam essa integração e seus benefícios 
(inspeções consistentes, configuração de severidades, relatórios centralizados), reforçando o papel da 
análise estática (JETBRAINS, 2025). 
 
Plataformas Web Interativas 
 

Desde o fim dos anos 1980, quando Tim Berners-Lee propôs no CERN um sistema de 
hipertexto distribuído para organizar e compartilhar informações científicas, “It discusses the 
problems of loss of information about complex evolving systems and derives a solution based on a 
distributed hypertext system.”. A Web passou de páginas estáticas acessadas por navegadores simples 
a um ecossistema padronizado e amplamente interoperável, como demonstra na figura 5, porém, só 
em 2014 o HTML5 se consolidou como recomendação do W3C, unificando funcionalidades 
essenciais como multimídia, gráficos e APIs, estabelecendo a base para aplicações ricas no navegador.  
Nesse contexto histórico-técnico, torna-se natural evoluir para plataformas web interativas que 
integram front-end e back-end com renderização híbrida e ferramentas de edição em tempo real. 
(BERNERS-LEE, 1989; W3C, 2014). 

Ao longo dos anos, o desenvolvimento web tem sofrido diversas mudanças e otimizações, e 
nesse processo surgiram frameworks e bibliotecas mais performáticas, com foco em desempenho e 
manutenibilidade. Inserido nesse contexto, a proposta materializa-se em uma plataforma web 
construída com Next.js, framework full-stack sobre Node, React, integra frontend e backend na 
mesma aplicação, com roteamento por arquivos, rotas de API e renderização híbrida. O editor 
embutido utiliza o Monaco Editor, que, segundo a documentação oficial, é "the code editor that 
powers VS Code". Esse arranjo permite ao usuário escrever e editar um código, enviar para análise e 
visualizar imediatamente a classe de complexidade com gráficos e explicações, sem sair da página 
(Microsoft/Monaco, 2025). 



 

 

O fluxo da aplicação é objetivo, a página envia o código e metadados, por exemplo, qual 
coleção define  ao serviço de análise por um Route Handler, “Route Handlers allow you to create 
custom request handlers for a given route using the Web Request and Response APIs.”  O backend 
constrói a AST e o CFG, aplica as regras e retorna a classe Big-O com uma prova textual e artefatos 
para visualização. Para não bloquear a interface, o front usa streaming com Server Components, 
“Streaming: Server Components allow you to split the rendering work into chunks and stream them 
to the client as they become ready.”. A UI exibe gráficos de crescimento e destaca, em linguagem 
simples, porque determinado laço ou recursão implica a ordem reportada. Por segurança e 
reprodutibilidade, o sistema não executa o código submetido; toda a inferência decorre de parsing e 
análise estática fornecida pelo usuário (Next.js, 2025). 

Do ponto de vista técnico, o front-end atua como uma camada de interação, responsável por 
capturar o código digitado pelo usuário e renderizar visualmente os resultados, como árvores, grafos 
e explicações textuais. Já o back-end executa o núcleo da análise estática, aplicando algoritmos de 
parsing, derivação sintática e inferência de complexidade. O resultado é uma aplicação modular, na 
qual a camada de exibição é independente da lógica analítica, garantindo portabilidade e reuso em 
diferentes contextos de ensino e pesquisa (Adamkó, 2014). 

Outro aspecto relevante é a reprodutibilidade dos resultados. Por não executar o código 
analisado, mas apenas inspecionar sua estrutura sintática e lógica, o sistema garante que o 
comportamento observado seja independente do ambiente e dos dados de entrada, mantendo a 
coerência entre diferentes execuções. Essa propriedade é essencial em pesquisas e comparações de 
algoritmos, pois assegura que a análise de complexidade dependa exclusivamente da estrutura do 
código e não de fatores externos como compilador, hardware ou tempo de execução (RIVAL; YI, 
2020). Em síntese, o uso de uma plataforma web interativa para análise estática de código une teoria, 
prática e acessibilidade. O sistema permite que qualquer usuário explore o comportamento estrutural 
de algoritmos, visualize os padrões de complexidade e compreenda as justificativas da classificação 
Big-O de forma intuitiva. Essa combinação entre parsing automatizado, interpretação formal e 
interface visual define um novo modelo de aprendizado e pesquisa aplicado à ciência da computação 
moderna. 
 

Figura 5. Arquitetura de multicamadas de Aplicações Web (PennState, 2022) 

 
 
 
RESULTADOS E DISCUSSÃO 
 

Mediante aos resultados alcançados, o projeto prático se deu por meio da utilização de 
componentes que desempenharam para que a análise estática de algoritmos com geração de 
complexidade assintótica fosse gerada com sucesso. O projeto final consistiu na implementação de 
uma ferramenta web interativa, denominada Big O Analyzer, que permite ao usuário inserir um 
código-fonte em diferentes linguagens de programação e, conforme o código fornecido pelo usuário, 



 

 

consegue obter uma estimativa da sua complexidade algorítmica no pior caso, acompanhada de uma 
explicação textual e sugestões de otimização. 

De maneira geral, o sistema foi desenvolvido utilizando o framework Next.js, que possibilitou 
a construção de uma interface moderna, responsiva e dinâmica. Essa interface, integrada ao editor de 
código Monaco, permite que o usuário digite, cole ou modifique um trecho de código em linguagens 
como JavaScript, Python e Java, e visualize os resultados em tempo real. A escolha do Monaco como 
editor base se justifica por sua capacidade de fornecer recursos avançados, como realce de sintaxe 
(syntax highlighting), numeração de linhas e detecção automática de erros básicos, características que 
contribuem significativamente para a experiência do usuário durante a inserção e modificação do 
código-fonte. O funcionamento da aplicação segue um fluxo de dados modular, em que cada parte do 
código-fonte é analisada por etapas independentes até a obtenção do resultado. 

A arquitetura geral do sistema pode ser representada por um modelo conceitual, conforme 
representada na Figura 6. Nessa arquitetura, o processo inicia-se na interface do usuário (UI), onde o 
código é inserido e a linguagem é selecionada. Em seguida, os dados são encaminhados para o 
pipeline de análise, que executa uma sequência de módulos: AST Parser, Normalizer, IR builder, CFG 
Builder, Bounds Analyzer e Evaluator. O resultado dessa cadeia de etapas é então devolvido para a 
interface, que o apresenta em formato de texto, com ícones, cores e dicas visuais de complexidade. O 
tempo de resposta do sistema foi otimizado para executar em poucos segundos na maioria dos casos 
de uso testados, garantindo uma experiência fluida e responsiva. 
 
Interface do Usuário 
 

A interface do usuário foi desenvolvida para tornar essa experiência intuitiva e visualmente 
clara. Ao clicar em Analisar, o sistema exibe um pequeno indicador de carregamento enquanto o 
pipeline processa as informações. Assim que o resultado é retornado, o usuário visualiza uma janela 
indicando a classe de complexidade de pior caso, acompanhada da explicação textual e de uma lista 
de sugestões. As cores dos ícones seguem uma escala intuitiva, onde, verde para O(1), azul para O(log 
n), amarelo para O(n), laranja para O(n log n) e vermelho para O(n²) ou de maiores complexidades, 
auxiliando na rápida identificação da eficiência do código. 
 

Figura 6. Arquitetura geral do sistema Big O Analyzer. 

 
 
 
 
 



 

 

Pipeline de Análise 
 

O pipeline de análise é o núcleo lógico da aplicação. Ele tem como principal função 
transformar o código-fonte digitado em um conjunto de informações estruturadas que possam ser 
interpretadas e classificadas. Para isso, o processo ocorre em seis etapas principais, observados na 
Figura 7, cada uma dessas etapas foi cuidadosamente projetada para operar de forma eficiente e 
independente, permitindo que o sistema escale adequadamente mesmo com códigos mais complexos 
ou extensos. 

Na primeira etapa, chamada parser, o sistema converte o texto digitado em uma árvore 
sintática abstrata (AST). Essa árvore é uma representação hierárquica das estruturas do código, como 
funções, laços e condicionais. O parser foi projetado de forma simples e rápida, priorizando 
portabilidade entre linguagens. Por exemplo, ele é capaz de identificar um laço for ou while sem 
precisar compreender todos os detalhes da sintaxe da linguagem. Esse formato permite que o sistema 
seja facilmente adaptado para outras linguagens de programação no futuro, mantendo o desempenho 
em tempo real. 

A implementação do parser utiliza técnicas de análise léxica baseadas em tokens, onde cada 
palavra-chave, operador ou identificador é reconhecido e classificado antes da construção da árvore. 
Essa abordagem, embora simplificada em comparação com parsers completos de compiladores, 
mostrou-se suficiente para os propósitos educacionais e exploratórios do projeto, mantendo um 
equilíbrio entre precisão e desempenho. 

Após essa conversão inicial, a etapa de normalização transforma os elementos específicos de 
cada linguagem em um formato padronizado, chamado IR. Essa camada funciona como um “idioma 
comum” entre diferentes linguagens, garantindo que uma função em Python e uma função equivalente 
em JavaScript sejam tratadas da mesma forma nas etapas seguintes. A normalização gera uma lista 
de nós com informações básicas, como o nome da função, tipo de laço e nível de aninhamento. 

Durante o processo de normalização, também são eliminadas construções sintáticas 
irrelevantes para a análise de complexidade, como comentários, strings literais e formatação 
específica de cada linguagem, focando exclusivamente nas estruturas de controle de fluxo que 
impactam o desempenho algorítmico. Essa etapa é fundamental para garantir a consistência dos 
resultados independentemente da linguagem de programação utilizada.  

Em seguida, entra em ação o módulo de construção de grafo IR, que organiza esses nós em 
uma estrutura gráfica composta por pontos de entrada e saída. Essa estrutura, chamada Control Flow 
Graph (CFG), modela o caminho lógico percorrido pela execução do algoritmo. Por exemplo, cada 
condição if ou else representa uma bifurcação, e cada laço adiciona uma ligação de retorno, simulando 
a repetição das instruções, tal trecho é representado nas imagens 8 e 9 respectivamente. 

Após o grafo ser montado, o módulo bounds analyzer realiza uma varredura sobre o código-
fonte bruto para identificar laços, chamadas recursivas e padrões de divisão de problemas, como 
ocorre em algoritmos de busca binária ou de ordenação por mesclagem (merge sort). Essa etapa utiliza 
expressões regulares e heurísticas simples para determinar quantas vezes um bloco de instruções pode 
ser repetido ou dividido, gerando dados sobre a profundidade de aninhamento e sobre a presença de 
recursividade. 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figura 7. Representação do fluxo da Pipeline no código. 
 

 
 

Com base nessas informações, o evaluator (avaliador) combina os resultados das análises 
anteriores para determinar a classe de complexidade Big O. Ele utiliza regras pré-definidas e um 
conjunto de constantes armazenadas em uma biblioteca interna (lib/constants). Por exemplo, se o 
código apresenta um único laço simples, o sistema interpreta a complexidade como O(n). Se há dois 
laços aninhados, ela é classificada como O(n²). Se o padrão detectado corresponde a uma divisão 
recursiva do problema, como em uma busca binária, o resultado é O(log n) ou O(n log n). 

O resultado dessa avaliação é retornado para a interface na forma de um objeto contendo três 
campos principais: complexity, explanation e suggestions. O primeiro campo traz a classe Big-O 
propriamente dita (como O(1), O(n), O(n log n), O(n²) etc.); o segundo apresenta uma explicação em 
linguagem natural, descrevendo o comportamento do algoritmo; e o terceiro oferece sugestões de 
melhoria, como reduzir laços aninhados ou utilizar métodos nativos mais eficientes. 

 
 
 
 
 
 
 
 
 
 
 



 

 

Figura 8. Código representativo em Java para a construção do CFG. 

 
 

Figura 9. Fluxograma do CFG em Java. 

 
 
Apresentação de Resultados 
 

Como exemplo de funcionamento, foi testado um trecho clássico de código em Python com 
base na tabela 2, referente ao algoritmo de ordenação por bolha (Bubble Sort), reproduzido na figura 
10. O sistema analisou corretamente a presença de dois laços aninhados, identificando que o número 
de comparações cresce proporcionalmente ao quadrado do tamanho da entrada. Dessa forma, 
classificou o algoritmo como pertencente à classe O(n²). Além disso, apresentou uma explicação 
descritiva e uma sugestão de otimização, ressaltando que, embora o código seja funcional, sua 
eficiência é limitada para grandes volumes de dados, podendo ser substituído por métodos mais 
eficientes, como Merge Sort ou Quick Sort, representada na figura 11. 

Esse resultado evidencia que o sistema cumpre seu objetivo principal: tornar acessível o 
entendimento da eficiência de algoritmos de maneira automática e pedagógica. O Big O Analyzer não 
pretende substituir ferramentas de análise formal de compiladores, mas oferecer uma abordagem 
educacional simplificada, voltada para estudantes e desenvolvedores que desejam compreender, de 
forma heurística, o impacto de suas decisões lógicas no desempenho do código. 



 

 

Durante a implementação, buscou-se equilibrar a velocidade da análise e a precisão dos 
resultados. O uso de parsers simplificados reduziu a carga de processamento e aumentou a 
compatibilidade entre linguagens, ainda que isso signifique renunciar a algumas minúcias sintáticas. 
Na prática, esse compromisso mostrou-se vantajoso: o sistema é capaz de processar trechos de código 
em milissegundos, mantendo a fluidez da interface, mesmo em navegadores comuns. 

Outro ponto relevante foi a utilização de constantes centralizadas, que padronizam palavras-
chave, estruturas de controle e métodos nativos de bibliotecas comuns. Essa escolha facilitou a 
manutenção e ampliou a escalabilidade do projeto. A adição de novas linguagens, por exemplo, exige 
apenas a criação de um novo parser leve e o registro de suas palavras-chave correspondentes. 
 

Tabela 2. Evidências da Complexidade Assintótica dos Algoritmos Testados pelo Big O Analyzer 
Algoritmo Linguagem Complexidade 

teórica (pior 
caso) 

Complexidade 
indicada pelo 

sistema 

Resultado Observações 
rápidas 

Busca linear 
em vetor 

Python O(n) O(n) Correto Percorre todos 
os elementos 
do vetor uma 
vez; tempo 
cresce 
linearmente 
com n. 

Busca binária 
em vetor 
ordenado 

Java O(log n) O(log n) Correto A cada passo o 
espaço de 
busca é 
reduzido pela 
metade. 

Subset Sum 
(busca 
exaustiva de 
subconjuntos) 

JavaScript O( ) O( ) Correto Percorre todos 
os 
subconjuntos 
possíveis do 
conjunto de n 
elementos. 

Ordenação por 
bolha (Bubble 
Sort) 

Python O(n²) O(n²) Correto Dois laços 
aninhados com 
comparações 
sucessivas 
entre pares de 
elementos. 

Ordenação por 
mesclagem 
(Merge Sort) 

JavaScript O(n log n) O(n log n) Correto Divide o 
problema em 
sublistas 
recursivamente 
e faz 
mesclagem 
linear em cada 
nível. 

 
 
 
 
 



 

 

Figura 10. Código em Python (Bubble Sort). 

 
 

Figura 11. Resultados demonstrado pelo website após a análise do código em Python. 

 
 

Entre os desafios enfrentados durante o desenvolvimento, destacam-se as limitações inerentes 
à análise heurística. Como o sistema não executa o código de fato, ele depende da identificação de 
padrões estruturais. Isso significa que certos algoritmos que utilizam metaprogramação, geração 
dinâmica de funções ou bibliotecas externas podem não ter suas complexidades corretamente 
inferidas. Entretanto, essa limitação não compromete o propósito principal do projeto, que é o uso em 
contextos educacionais e exploratórios. 

Em termos de resultados, o Big O Analyzer demonstrou consistência e clareza na classificação 



 

 

de algoritmos comuns, como busca linear, ordenação por inserção, busca binária e ordenação por 
mesclagem. A interface amigável e as explicações em linguagem natural tornaram o sistema útil para 
introduzir estudantes aos conceitos de complexidade assintótica e eficiência de algoritmos, de modo 
visual e interativo. 

Dessa forma, pode-se afirmar que o projeto atendeu integralmente aos objetivos propostos. A 
integração entre os módulos, a fluidez do pipeline e a simplicidade da interface reforçam o potencial 
da aplicação tanto como ferramenta didática quanto como base para evoluções futuras. Caso sejam 
incorporadas novas linguagens e aprimorados os detectores de recursividade, o sistema poderá 
oferecer resultados ainda mais completos e precisos. 

Em síntese, o desenvolvimento do Big O Analyzer demonstrou que é possível construir uma 
solução prática, acessível e pedagógica para análise estática de algoritmos, aliando conceitos teóricos 
de complexidade assintótica a uma experiência interativa e intuitiva. 
 
CONSIDERAÇÕES FINAIS 
 

O desenvolvimento deste trabalho demonstrou que é possível realizar a análise estática de 
algoritmos com geração automática de complexidade assintótica, atendendo plenamente ao objetivo 
proposto na introdução. A criação do sistema Big O Analyzer validou a hipótese de que heurísticas 
estruturais baseadas em AST e CFG podem ser aplicadas de forma prática para estimar o 
comportamento assintótico de diferentes algoritmos sem necessidade de execução do código.  

A ferramenta desenvolvida mostrou-se eficaz ao identificar corretamente padrões de loops, 
recursões e estruturas de controle, classificando-os em classes de complexidade Big-O com 
explicações claras e acessíveis. O projeto também evidenciou a relevância da integração entre teoria 
e prática: conceitos tradicionalmente abstratos da análise de algoritmos foram traduzidos em 
representações visuais e interpretações automáticas que facilitam o aprendizado e a compreensão de 
estudantes e desenvolvedores.  

A abordagem adotada conciliou eficiência técnica e simplicidade pedagógica, permitindo 
respostas rápidas e uma experiência interativa em ambiente web. Além disso, o uso de tecnologias 
modernas como Next.js e Monaco Editor proporcionou uma interface responsiva e intuitiva, 
reforçando o caráter acessível e didático da solução. 

Entre as principais contribuições do trabalho estão a demonstração da viabilidade de se 
realizar inferências assintóticas sem execução do código, a padronização do processo de análise por 
meio de normalização entre linguagens e a proposta de um modelo visual de apoio à aprendizagem. 
Embora o sistema apresente limitações em casos que evolvem metaprogramação ou dependência de 
bibliotecas externas, ele cumpre seu propósito principal de forma satisfatória e abre caminhos para 
aprimoramentos futuros. 

Como próximos passos, propõe-se a expansão do Big O Analyzer em uma frente 
primordialmente técnica. O sistema pode ser evoluído com parsers mais robustos, capazes de lidar 
com diferentes estilos de escrita de código, aliado ao suporte a um conjunto mais amplo de linguagens 
de programação. Além disso, a incorporação de heurísticas mais sofisticadas permitirá tratar com 
maior precisão cenários complexos, como o uso intensivo de bibliotecas e casos de recursão indireta, 
ampliando tanto a confiabilidade quanto o alcance prático da ferramenta. 
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