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Resumo

Este estudo teve como meta validar e evidenciar, na pratica, a aplicacao da complexidade assintética
por meio da andlise estatica de algoritmos. Para isso, foi desenvolvida uma ferramenta web interativa
que possibilita a geragao e visualizagdo da complexidade de diversos algoritmos, tornando esses
conceitos teoricos, frequentemente considerados abstratos, mais acessiveis, concretos e passiveis de
verificacdo em um contexto pratico. A pesquisa abordou desde os fundamentos da teoria da
complexidade algoritmica, passando pela aplicacdo de heuristicas de identificagdo de estruturas de
controle, até a construgio de representagdes estruturais como Arvores Sintaticas Abstratas (AST) e
Grafos de Fluxo de Controle (CFG), que serviram de base para a inferéncia da complexidade. A partir
dessa fundamentagao, foi desenvolvido o sistema Big O Analyzer, utilizando tecnologias modernas
como Next.js e Monaco Editor, o que permitiu integrar uma interface interativa a um pipeline de
analise eficiente ¢ modular. O sistema processa trechos de codigo escritos em linguagens como
JavaScript, Python e Java, identifica padrdes como loops, recursdes e divisdes de problema e retorna
a classe de complexidade correspondente, acompanhada de explicagdes textuais e sugestdes de
otimizag¢do. Os resultados mostraram que a aplicacao foi capaz de reconhecer corretamente diferentes
classes de complexidade de O(1) a O(n!) demonstrando consisténcia com os fundamentos teoéricos e
confirmando a validade da proposta. Além de sua utilidade pratica, o projeto apresenta relevancia
académica ao oferecer uma nova abordagem de ensino para o estudo de algoritmos, unindo
interatividade, visualiza¢do e formalismo teorico.
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Abstract

This study aimed to validate and demonstrate, in practice, the application of asymptotic complexity
through the static analysis of algorithms. To achieve this, an interactive web tool was developed that
enables the generation and visualization of the complexity of various algorithms, making these
theoretical concepts often considered abstract more accessible, concrete, and verifiable in a practical
context. The research covered topics ranging from the fundamentals of algorithmic complexity
theory, the application of heuristics for identifying control structures, to the construction of structural
representations such as Abstract Syntax Trees (AST) and Control Flow Graphs (CFG), which served
as the foundation for complexity inference. Based on this groundwork, the Big O Analyzer system
was developed using modern technologies such as Next.js and Monaco Editor, allowing the



integration of an interactive interface with an efficient and modular analysis pipeline. The system
processes code snippets written in languages such as JavaScript, Python, and Java, identifies patterns
such as loops, recursion, and problem division, and returns the corresponding complexity class,
accompanied by textual explanations and optimization suggestions. The results showed that the
application was able to correctly recognize different complexity classes, from O(1) to O(n!),
demonstrating consistency with theoretical foundations and confirming the validity of the proposal.
In addition to its practical usefulness, the project holds academic relevance by offering a new teaching
approach for the study of algorithms combining interactivity, visualization, and theoretical formalism.
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INTRODUCAO

Entre as décadas de 1960 e 1970, a discussao sobre eficiéncia de algoritmos ganhou estatuto
formal com a publicacdo de The Art of Computer Programming, de Donald Knuth, que sistematizou
fundamentos e ajudou a popularizar a notagcdo assintdtica (Big O) como linguagem padrao para
comparar ordens de crescimento, independentemente de plataforma ou linguagem. Ao mesmo tempo,
Knuth (1997), enfatizou a utilidade de raciocinios aproximados para fins de comparagao: “We often
want to know a quantity approximately, instead of exactly, in order to compare it to another.”. Esse
principio reforga que a notacdo assintotica privilegia ordens de crescimento sobre constantes e
detalhes de implementacdo. Desde entdo, a notacdo assintotica firmou-se como padrao de fato para
medir e comunicar o desempenho de algoritmos na computagcdo moderna.

Na pratica, consolidou-se o uso de microbenchmarks e profiling poés-implementaciao para
comparar algoritmos; sdo tuteis, mas sujeitos a vieses de hardware, compilador/JIT e distribuicdo das
entradas, o que frequentemente gera leituras parciais. Como lembra Dijkstra (1970), “Program testing
can be used to show the presence of bugs, but never to show their absence!”, uma adverténcia que,
por analogia, vale para desempenho: testes revelam gargalos, ndo provam a classe de complexidade.

Por isso, ganhou for¢a a aproximacao da andlise assintotica ao proprio codigo via andlise
estatica, produzindo estimativas fundamentadas e reprodutiveis que complementam, em vez de
substituir, a experimentacdo. Nesse cenario, a analise estatica consolidou técnicas e ferramentas que
extraem propriedades sem executar o programa de AST/CFG a interpretagdo abstrata e analise de
fluxo de dados formando uma base solida para inferéncia automatica de custos assintoticos e
explicagdes reproduziveis. Assim, aproximar a complexidade do préprio codigo deixa de ser apenas
uma conveniéncia didatica e torna-se um caminho concreto para padronizar comparagdes e reduzir
vieses de medi¢cdo. Conforme sintetiza a JETBRAINS (2025), a andlise estatica examina o codigo
sem execugao, detecta precocemente defeitos e vulnerabilidades e, quando integrada ao CI/CD, atua
de forma complementar a analise dindmica.

A proposta deste artigo ¢ investigar técnicas de andlise estatica de codigo para estimar a
complexidade assintotica de algoritmos. A proposta envolve a construcao de um sistema que, a partir
de trechos de codigo, gera arvores sintaticas abstratas (AST) e grafos de fluxo de controle (CFQG),
aplicando regras heuristicas para identificar estruturas criticas como recursdo, loops aninhados e
algoritmos de ordenacdo, fornecendo justificativas detalhadas da classificagdo obtida. Do ponto de
vista pratico, um sistema desse tipo tem duas aplica¢des centrais: ensino de algoritmos, ao tornar
visivel a ligacdo entre estruturas de controle e ordens de crescimento com justificativas locais e
graficos; e ecossistema de compiladores e revisdo de codigo, ao fornecer alertas precoces sobre
potencial degradacdo assintdtica e pistas de otimizacdo ainda na fase de desenvolvimento, sem
dependéncia de cargas de teste especificas.

FUNDAMENTACAO TEORICA

Com base nos conceitos apresentados, se originou a ideia de criar um sistema web para analise



estatica de algoritmos. A ideia ¢ utilizar ferramentas modernas e confidveis, que auxiliem tanto na
aprendizagem de algoritmos quanto na pratica, servindo como um recurso valioso para compiladores.
Para tanto, foi realizada uma pesquisa minuciosa a fim de se compreender melhor a fundamentagao
teorica e o funcionamento de como se faz a andlise de algoritmos em funcdo do crescimento
assintotico.

Teoria da Complexidade Algoritmica

Podemos nos deparar em algumas ocasides com problemas e/ou dificuldades de aplicabilidade
quando trabalhamos com algoritmos, isso € relacionado ao seu tamanho de entrada ou complexidade,
¢ de extrema importancia compreender a complexidade do algoritmo com o qual estamos lidando.
Segundo (Cormen et al, 2009): “Algoritmos diferentes criados para resolver o mesmo problema
muitas vezes sao muito diferentes em termos de eficiéncia. Essas diferencas podem ser muito mais
significativas que as diferencas relativas a hardware e software.”. Essa ideia demonstra como a analise
de complexidade ¢ essencial, pois ajuda a deixar de lado detalhes especificos de hardware e
implementagdo. Com base nisso, podemos comparar diferentes solugdes para o mesmo problema de
forma clara.

Nessas circunstancias, a notac¢do assintdtica consolidou-se como principio de referéncia para
descrever o comportamento de algoritmos, do tempo de execugao e do consumo de memoria a medida
que o tamanho da entrada cresce. Como citado por Sipser (2013), “The theories of computability and
complexity are closely related. In complexity theory, the objective is to classify problems as easy
ones and hard ones; Whereas in computability theory, the classification of problems is by those that
are solvable and those that are not. Computability theory introduces several of the concepts used in
complexity theory”, ela também destaca que classificar problemas e algoritmos de acordo com
diferentes niveis de crescimento ¢ importante para entender o quao dificil eles sdo por natureza.

Além disso, ¢ importante considerar que a analise de complexidade se divide em dois
principais eixos: tempo e espago. A complexidade de tempo mede a quantidade de operagdes
necessdrias para concluir a execu¢do de um algoritmo, enquanto a complexidade de espago mede a
quantidade de memoria utilizada durante o processo. Muitas vezes, existe um equilibrio entre tempo
e espaco, conhecido como trade-off, em que o aumento da eficiéncia temporal pode implicar maior
consumo de memoria, e vice-versa. Essa relagdo ¢ descrita por (Knuth, 1997) como um dos aspectos
centrais da eficiéncia algoritmica, pois qualquer otimizacdo deve considerar ambos os fatores para
alcancar o melhor desempenho possivel.

(Cormen et al., 2009) ressaltam que as principais classes de complexidade podem ser
organizadas em categorias especificas, conforme mostrado na Tabela 1. Essa tabela apresenta as
ordens de crescimento mais comuns, bem como exemplos significativos de algoritmos relacionados.
Essa classificacao ajuda a comparar desempenho e prever escalabilidade a medida que o tamanho
da entrada cresce.

Tabela 1. Classes de Complexidade Assintotica (Bigocheatsheet, 2013)

Classe Crescimento Exemplo classico
o) Constante Acesso direto em vetor
O(log n) Logaritmico Busca bindria
O(n) Linear Percorrer lista
O(n log n) Linearitmico Merge Sort
O(n?) Quadratico Bubble Sort
02 Exponencial Backtracking
O(n!) Fatorial Permutacdes completas

Além disso, a teoria da complexidade engloba a categorizagdo dos problemas computacionais
em classes amplas e teoricamente fundamentadas, como P, NP e NP-completo, de acordo com Sipser
(2013). Os problemas que pertencem a classe P podem ser solucionados em tempo polinomial. Em



contrapartida, os problemas da classe NP permitem solugdes que podem ser verificadas em tempo
polinomial, mas ainda ndo se sabe se todos esses problemas podem ser resolvidos diretamente nesse
mesmo intervalo de tempo. Essa distingdo ¢ fundamental para compreender o que ¢ eficiente ou
intratdvel na computacdo atual, sendo um dos alicerces da analise teérica de algoritmos.

Assim, a analise assintdtica consolida-se permitindo decisdes mais racionais sobre qual
abordagem adotar em diferentes contextos. Como afirmam (Cormen et al., 2009): “Analisar um
algoritmo significa prever os recursos de que o algoritmo necessita. Ocasionalmente, recursos como
memoria, largura de banda de comunicacao ou hardware de computador sdo a principal preocupagio,
porém mais frequentemente € o tempo de computagdao que desejamos medir. Em geral, pela andlise
de varios algoritmos candidatos para um problema, pode-se identificar facilmente um que seja o mais
eficiente. Essa analise pode indicar mais de um candidato vidvel, porém, em geral, podemos descartar
varios algoritmos de qualidade inferior no processo.” Essa abordagem mostra que a teoria da
complexidade algoritmica nao ¢ s6 uma ideia vaga, mas também um guia util para distinguir entre
solugdes mais eficazes e aquelas que sdo menos eficientes.

Tal estrutura pode ser observada na Figura 1, que ilustra graficamente as diferentes ordens de
crescimento em fun¢do do tamanho da entrada.

Figura 1. Grafico de Complexidade Big-O (Bigocheatsheet, 2013)
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Heuristicas de Classificacdo de Estruturas de Controle

A andlise da complexidade assintdtica pode ser realizada por meio de heuristicas que
conectam estruturas de controle no codigo a padrdes de crescimento computacional. Essas heuristicas
funcionam como normas aplicadas que permitem estimar a ordem de complexidade apenas pela
sintaxe do programa, eliminando a necessidade de fazer célculos matematicos tradicionais em muitos
casos. Conforme a figura 2, essa estratégia € essencial ndo apenas no ensino de algoritmos, pois torna-
se mais facil academicamente de se entender, mas também nas ferramentas de analise estatica de
codigo, que empregam arvores sintaticas e grafos de fluxo de controle para detectar lagos, recursdes
e ramificacdes que afetam o desempenho (Aho et al., 2008).

Em um modo geral, loops simples representam o primeiro nivel de classificagdao. Estruturas
de repeticdo, como for ou while, ao percorrerem a entrada de uma forma linear exibem uma
complexidade igual O(n), pois cada iteracao processa um pedago que € proporcional ao tamanho da
entrada (Cormen et al., 2009). A heuristica fundamental é: um lago— O(n), indicando um
crescimento linear.

No préximo nivel, loops aninhados indicam a composi¢cdo multiplicativa do espago de
iteragdes. Por exemplo, dois lagos for aninhados até 1 levam a O(n*), ja que cada elemento da entrada
¢ tratado em combinag¢do com todos os demais. Essa conexdo pode ser estruturada em tabelas
hierarquicas, nas quais cada nivel de aninhamento representa uma nova poténcia de n (Sedgewick e



Wayne, 2011).

Um padrao importante ¢ também a estrutura recursiva. A recursdo simples, como no exemplo
do fatorial, resulta em O(n). Ja a recursio do tipo Divide and Conquer, como no MergeSort ou
QuickSort, segue a relagdo de recorréncia T(n) = 2T(n/2)+ O(n), cuja solug¢do resulta em
O(nlogn) (Cormen et al., 2009), onde tal resultado ¢é apresentado na figura 3. Isso serve para ilustrar
a importancia das arvores de recursdo, que podem ser representadas graficamente para mostrar como
o problema ¢ dividido de forma sucessiva.

Além das estruturas iterativas e recursivas, heuristicas também podem ser aplicadas a
estruturas condicionais e blocos dependentes, que interferem o custo total de execugdo conforme o
numero de caminhos possiveis. Estruturas condicionais, embora ndo representem repeticao explicita,
assim como impactam a complexidade ao definir caminhos alternativos de execu¢do. A heuristica
classica assume o pior caso (o caminho mais custoso) como representativo da ordem de crescimento.

Em CFGs, esse comportamento ¢ refletido por multiplos caminhos de controle, da qual unido
determina o limite superior assintotico. Assim, a analise estatica tende a aproximar o custo total pela
soma ou maximo dos fluxos de controle, conforme o modelo de execucao adotado. Esse tipo de
inferéncia ¢ singularmente relevante em cddigos com multiplas dependéncias condicionais ou com
fungdes que possuem comportamento variavel em tempo de execugdo (LLVM PROJECT, 2018).

A interpretagdo das heuristicas também muda dependendo do paradigma de programacdo. Em
linguagens imperativas, o controle de fluxo explicito possibilita estimativas diretas tanto de iteracao
quanto de recursdo. No caso de linguagens orientadas a objetos, a analise deve levar em conta o custo
das chamadas dinamicas e o encadeamento de métodos que sdo herdados. Em vez de loops,
encontramos recursdes puras e composi¢cdes de fungdes em linguagens funcionais, o que exige
heuristicas para reconhecer padrées como map, reduce ou fold no lugar de loops explicitos. Essas
variagdes ressaltam a necessidade de alinhar o modelo heuristico com o paradigma em questdo, a fim
de obter maior precisdo e compatibilidade entre diversos estilos de programagao (Kosinski et al.,
2024).

Por fim, heuristicas mais detalhadas se concentram em padrdes classicos, como a busca
binaria 0(logn), loops duplos dependentes O(n *m) ou algoritmos de tempo exponencial O(2"),
que normalmente envolvem uma combinagdo exaustiva. A ordenagdo desses modelos ¢ um passo
importante tanto no ensino de algoritmos quanto na pratica profissional, pois ajuda a achar rapido o
crescimento pela estrutura do co6digo. Desse modo, Sipser (2013) ressalta que a analise do tempo de
execugao e o reconhecimento de problemas intratdveis sdo fundamentais para compreender os limites
da computagdo e situar algoritmos dentro de diferentes niveis de complexidade.

Figura 2. Operacdes Comuns de Estruturas de Dados (Bigocheatsheet, 2013)

Data Structure Time Complexity Space Complexity
Average Worst Worst
Access Search Insertion Deletion Access Search Insertion Deletion
Array ) o
Stack
Queue o(n) o(n) 0@) o(n)
Singly-Linked List o(n)
Doubly-Linked List o(n) o(n) o) o(n)
Skip List [e(0g(n))] [(208(n)) ] [6(108(n))] [0(208(n))] [0(n)
Hash Table N/A N/A [om)]
Binary Search Tree [e(1og(n))] [6(10g(n)) | [6(10g(n)) ] [€(2og(n)) ] o(n) o(n) 0(n) o(n)
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Figura 3. Algoritmos de Ordenagdo de Arrays (Bigocheatsheet, 2013)

Algorithm Time Complexity Space Complexity
Best Average Worst Worst
Quicksort  [a(n 10g(n))| [e(n 10g(n))] [o(n~2)] [o(20g(n)) |
Mergesort  [a(n log(n))] [6(n log(m))] [o(n log(n))]
Timsort [6¢n 10g(n))]  [o(n 20g(n))] o(n)
Heapsort |0(n log(n))l Ie(n log(n))l Io(n log(n))l
Bubble Sort [e(n~2)] [om~2))
Insertion Sort [e(n*2)] [o(nr2)] o(1)
Selection Sort  [a(n*2)] [e(n*2)] [o(n~2)]
Tree Sort  [o(n 1og(n)] [e(n 1og(n))] [o(n"2)]
Shell Sort  [a(n 1og(n))] [e(n(Iog(n))*2)] [O(n(Ioe(n))2)]|
Bucket Sort  [a(ask)] [etn+) | [o(n~2)] o(n)
Radix Sor
Counting Sort  [atask)] [e(n+k) | [otn+i) | 0(k)
Cubesort [etn 10g(n))]  [0(n 1og(n))] o(n)

Analise Estatica de Codigo (AST/CFG)

A andlise estatica investiga propriedades do programa sem executa-lo, traduzindo o cdodigo-
fonte em representagdes que tornam explicitas a estrutura e o fluxo 16gico. Duas pegas centrais sao a
Arvore Sintatica Abstrata (AST), que preserva o contetido semanticamente relevante do programa, e
o Grafo de Fluxo de Controle (CFG), que mapeia os caminhos possiveis de execugao entre blocos
basicos, de que modo ¢ exibido na figura 4. Em termos simples, a AST descreve o que o programa €,
enquanto o CFG mostra como ele pode ser percorrido. Sobre CFG, a documentagao do GCC define:
“The CFG is a directed graph where the vertices represent basic blocks and edges represent possible
transfer of control flow from one basic block to another.” Esse par de estruturas, consolidado na
literatura de compiladores e andlise de programas, sustenta estimativas assintdticas por evidenciar
padrdes estruturais que influenciam diretamente o custo (GCC., 2025).

A partir dessas representacgdes, a ferramenta identifica hierarquias de aninhamento, recursoes
e composigdes frequentes na AST, enquanto o CFG explicita ciclos e caminhos mutuamente
exclusivos em condicionais. Essas informacdes sdo essenciais para raciocinar sobre limites de
iteracdo e composicdo de custos. Para refinar as inferéncias sem executar o programa, aplicam-se
andlises de fluxo de dados e a interpretagdo abstrata, que propagam invariantes, como avangar um
indice até n ou uma recursao que divide o problema por 2, € permitem construir limites superiores de
forma sistematica. Na camada estrutural, a forma Static Single Assignment (SSA) e o grafo de
dependéncia de controle simplificam o encadeamento de defini¢gdes e usos e a relacado de dominagao
entre blocos, vale lembrar que “LLVM is a Static Single Assignment (SSA) based representation”
(LLVM PROIJECT, 2018).

No sistema proposto, o pipeline conceitual segue parsing, constru¢do da AST, derivagdo do
CFG, analises de dados e controle, aplicagao de regras de complexidade e emissao de justificativas.
A saida ¢ explicavel e reprodutivel: a classe Big-O, os pontos criticos que a sustentam e as hipoteses
adotadas sobre o que ¢ n e sobre pior caso. Em implementa¢des modernas de IR em SSA, limitagdes
praticas, como custos ndo visiveis de bibliotecas, polimorfismo e reflexdo, ou limites dependentes de
dados de entrada podem ser tratadas com resumos de custo conhecidos e, quando necessario, com
intervalos ou anotagdes do usudrio. Na literatura recente, “Static program analysis, or static analysis,
aims to discover semantic properties of programs without running them.” (RIVAL; Y1, 2020). Além
disso, ha propostas contemporaneas que certificam limites superiores de custo para reforcar a
reprodutibilidade dos resultados (ALBERT et al., 2025).



Figura 4. Exemplo de Grafo de Fluxo de Controle (Aho et al., 2008)

t1=10+1
t2=tl+j
t3=8+t2

t5=i-1
izi+t . t6=88+t5
if'i <= 10 goto B2 L=

B4

A analise estatica de codigo ¢ um campo consolidado na engenharia de software e na teoria
da computacao, fundamentado em métodos formais que examinam o comportamento potencial de um
programa a partir de sua estrutura sintatica. Diferentemente da andlise dindmica, que depende da
execugdo e das condigdes de entrada, a analise estdtica utiliza modelos abstratos para deduzir
propriedades deterministicas e reprodutiveis, como alcance de varidveis, dependéncias de controle e
limites de iteragdo (Nielson et al., 1998).

Entre as técnicas mais recorrentes estdo a interpretagdo abstrata e a andlise de fluxo de dados,
que permitem inferir estados possiveis do programa por meio da propagacao de informagdes entre
blocos basicos. A interpretagdo abstrata, proposta por Cousot (1977), oferece uma estrutura
matematica para representar o comportamento do coddigo em dominios simplificados como intervalos,
sinais ou contadores de iteragdo garantindo que as conclusdes obtidas sejam seguras, ainda que
aproximadas. Isso a torna ideal para inferir limites assintéticos de lagos e recursoes, ja que o objetivo
ndo ¢ calcular um resultado exato, mas determinar o crescimento relativo das operagdes em funcao
do tamanho da entrada.

O uso combinado de AST e CFG constitui a base pratica dessas analises. A AST fornece a
estrutura. No ciclo de vida moderno, a analise estatica ¢ frequentemente automatizada em CI/CD,
executando em cada commit para manter qualidade, seguranga e desempenho com feedback rapido a
equipe, ferramentas como o Qodana (JetBrains) documentam essa integragdo e seus beneficios
(inspec¢des consistentes, configuracao de severidades, relatorios centralizados), reforcando o papel da
analise estatica (JETBRAINS, 2025).

Plataformas Web Interativas

Desde o fim dos anos 1980, quando Tim Berners-Lee propés no CERN um sistema de
hipertexto distribuido para organizar e compartilhar informacdes cientificas, “It discusses the
problems of loss of information about complex evolving systems and derives a solution based on a
distributed hypertext system.”. A Web passou de paginas estaticas acessadas por navegadores simples
a um ecossistema padronizado e amplamente interoperavel, como demonstra na figura 5, porém, s6
em 2014 o HTMLS se consolidou como recomendagao do W3C, unificando funcionalidades
essenciais como multimidia, graficos e APIs, estabelecendo a base para aplicagdes ricas no navegador.
Nesse contexto historico-técnico, torna-se natural evoluir para plataformas web interativas que
integram front-end e back-end com renderizacdo hibrida e ferramentas de edigdo em tempo real.
(BERNERS-LEE, 1989; W3C, 2014).

Ao longo dos anos, o desenvolvimento web tem sofrido diversas mudancgas e otimizagdes, €
nesse processo surgiram frameworks e bibliotecas mais performadticas, com foco em desempenho e
manutenibilidade. Inserido nesse contexto, a proposta materializa-se em uma plataforma web
construida com Next.js, framework full-stack sobre Node, React, integra frontend e backend na
mesma aplicacdo, com roteamento por arquivos, rotas de API e renderizagdo hibrida. O editor
embutido utiliza o Monaco Editor, que, segundo a documentacdo oficial, ¢ "the code editor that
powers VS Code". Esse arranjo permite ao usudrio escrever e editar um codigo, enviar para analise e
visualizar imediatamente a classe de complexidade com graficos e explicagdes, sem sair da pagina
(Microsoft/Monaco, 2025).



O fluxo da aplicagdo ¢ objetivo, a pagina envia o codigo e metadados, por exemplo, qual
colecao define m ao servigo de andlise por um Route Handler, “Route Handlers allow you to create
custom request handlers for a given route using the Web Request and Response APIs.” O backend
constrdi a AST e o CFG, aplica as regras e retorna a classe Big-O com uma prova textual e artefatos
para visualizagdo. Para ndo bloquear a interface, o front usa streaming com Server Components,
“Streaming: Server Components allow you to split the rendering work into chunks and stream them
to the client as they become ready.”. A Ul exibe graficos de crescimento e destaca, em linguagem
simples, porque determinado laco ou recursdo implica a ordem reportada. Por seguranga e
reprodutibilidade, o sistema nao executa o codigo submetido; toda a inferéncia decorre de parsing e
analise estatica fornecida pelo usuario (Next.js, 2025).

Do ponto de vista técnico, o front-end atua como uma camada de interagao, responsavel por
capturar o codigo digitado pelo usudrio e renderizar visualmente os resultados, como arvores, grafos
e explicagdes textuais. Ja o back-end executa o nucleo da analise estatica, aplicando algoritmos de
parsing, derivagdo sintatica e inferéncia de complexidade. O resultado ¢ uma aplicagdo modular, na
qual a camada de exibi¢do ¢ independente da logica analitica, garantindo portabilidade e reuso em
diferentes contextos de ensino e pesquisa (Adamko, 2014).

Outro aspecto relevante ¢ a reprodutibilidade dos resultados. Por nao executar o codigo
analisado, mas apenas inspecionar sua estrutura sintdtica e logica, o sistema garante que o
comportamento observado seja independente do ambiente e dos dados de entrada, mantendo a
coeréncia entre diferentes execugdes. Essa propriedade é essencial em pesquisas e comparagdes de
algoritmos, pois assegura que a analise de complexidade dependa exclusivamente da estrutura do
codigo e ndo de fatores externos como compilador, hardware ou tempo de execucdo (RIVAL; Y1,
2020). Em sintese, o uso de uma plataforma web interativa para analise estatica de c6digo une teoria,
pratica e acessibilidade. O sistema permite que qualquer usuario explore o comportamento estrutural
de algoritmos, visualize os padrdes de complexidade e compreenda as justificativas da classificacao
Big-O de forma intuitiva. Essa combinagdo entre parsing automatizado, interpretacdo formal e
interface visual define um novo modelo de aprendizado e pesquisa aplicado a ciéncia da computagao
moderna.

Figura 5. Arquitetura de multicamadas de Aplicacdes Web (PennState, 2022)
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Mediante aos resultados alcangados, o projeto pratico se deu por meio da utilizagdo de
componentes que desempenharam para que a andlise estatica de algoritmos com geracao de
complexidade assintética fosse gerada com sucesso. O projeto final consistiu na implementacao de
uma ferramenta web interativa, denominada Big O Analyzer, que permite ao usuario inserir um
codigo-fonte em diferentes linguagens de programacao e, conforme o codigo fornecido pelo usuario,



consegue obter uma estimativa da sua complexidade algoritmica no pior caso, acompanhada de uma
explicagdo textual e sugestdes de otimizagao.

De maneira geral, o sistema foi desenvolvido utilizando o framework Next.js, que possibilitou
a constru¢do de uma interface moderna, responsiva e dindmica. Essa interface, integrada ao editor de
codigo Monaco, permite que o usuario digite, cole ou modifique um trecho de cddigo em linguagens
como JavaScript, Python e Java, e visualize os resultados em tempo real. A escolha do Monaco como
editor base se justifica por sua capacidade de fornecer recursos avangados, como realce de sintaxe
(syntax highlighting), numeracdo de linhas e detec¢ao automatica de erros basicos, caracteristicas que
contribuem significativamente para a experiéncia do usuario durante a inser¢ao e modificacao do
codigo-fonte. O funcionamento da aplicagdo segue um fluxo de dados modular, em que cada parte do
codigo-fonte ¢ analisada por etapas independentes até a obtencao do resultado.

A arquitetura geral do sistema pode ser representada por um modelo conceitual, conforme
representada na Figura 6. Nessa arquitetura, o processo inicia-se na interface do usuario (UI), onde o
codigo ¢ inserido e a linguagem ¢ selecionada. Em seguida, os dados sdo encaminhados para o
pipeline de analise, que executa uma sequéncia de médulos: AST Parser, Normalizer, IR builder, CFG
Builder, Bounds Analyzer e Evaluator. O resultado dessa cadeia de etapas ¢ entdo devolvido para a
interface, que o apresenta em formato de texto, com icones, cores e dicas visuais de complexidade. O
tempo de resposta do sistema foi otimizado para executar em poucos segundos na maioria dos casos
de uso testados, garantindo uma experiéncia fluida e responsiva.

Interface do Usuario

A interface do usudrio foi desenvolvida para tornar essa experiéncia intuitiva e visualmente
clara. Ao clicar em Analisar, o sistema exibe um pequeno indicador de carregamento enquanto o
pipeline processa as informagdes. Assim que o resultado € retornado, o usuario visualiza uma janela
indicando a classe de complexidade de pior caso, acompanhada da explicagdo textual e de uma lista
de sugestdes. As cores dos icones seguem uma escala intuitiva, onde, verde para O(1), azul para O(log
n), amarelo para O(n), laranja para O(n log n) e vermelho para O(n?) ou de maiores complexidades,
auxiliando na rapida identificagdo da eficiéncia do codigo.

Figura 6. Arquitetura geral do sistema Big O Analyzer.
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Pipeline de Analise

O pipeline de andlise ¢ o nucleo logico da aplicacdo. Ele tem como principal fungao
transformar o codigo-fonte digitado em um conjunto de informacgdes estruturadas que possam ser
interpretadas e classificadas. Para isso, o processo ocorre em seis etapas principais, observados na
Figura 7, cada uma dessas etapas foi cuidadosamente projetada para operar de forma eficiente e
independente, permitindo que o sistema escale adequadamente mesmo com cddigos mais complexos
ou extensos.

Na primeira etapa, chamada parser, o sistema converte o texto digitado em uma arvore
sintatica abstrata (AST). Essa arvore ¢ uma representacao hierarquica das estruturas do cdédigo, como
funcgdes, lacos e condicionais. O parser foi projetado de forma simples e rapida, priorizando
portabilidade entre linguagens. Por exemplo, ele ¢ capaz de identificar um lago for ou while sem
precisar compreender todos os detalhes da sintaxe da linguagem. Esse formato permite que o sistema
seja facilmente adaptado para outras linguagens de programagao no futuro, mantendo o desempenho
em tempo real.

A implementacgdo do parser utiliza técnicas de analise 1éxica baseadas em tokens, onde cada
palavra-chave, operador ou identificador ¢ reconhecido e classificado antes da construgdo da arvore.
Essa abordagem, embora simplificada em compara¢do com parsers completos de compiladores,
mostrou-se suficiente para os propdsitos educacionais e exploratérios do projeto, mantendo um
equilibrio entre precisdo e desempenho.

ApOs essa conversao inicial, a etapa de normalizagdo transforma os elementos especificos de
cada linguagem em um formato padronizado, chamado IR. Essa camada funciona como um “idioma
comum’” entre diferentes linguagens, garantindo que uma fun¢ao em Python e uma fung¢ao equivalente
em JavaScript sejam tratadas da mesma forma nas etapas seguintes. A normalizagdo gera uma lista
de nos com informagdes basicas, como o nome da funcao, tipo de lago e nivel de aninhamento.

Durante o processo de normalizagdo, também sdo eliminadas construgdes sintaticas
irrelevantes para a analise de complexidade, como comentarios, strings literais e formatagao
especifica de cada linguagem, focando exclusivamente nas estruturas de controle de fluxo que
impactam o desempenho algoritmico. Essa etapa ¢ fundamental para garantir a consisténcia dos
resultados independentemente da linguagem de programacao utilizada.

Em seguida, entra em a¢do o modulo de construcao de grafo IR, que organiza esses nds em
uma estrutura grafica composta por pontos de entrada e saida. Essa estrutura, chamada Control Flow
Graph (CFG), modela o caminho logico percorrido pela execucao do algoritmo. Por exemplo, cada
condi¢do if ou else representa uma bifurcagdo, e cada lago adiciona uma liga¢ao de retorno, simulando
a repeti¢do das instrugdes, tal trecho € representado nas imagens 8 e 9 respectivamente.

Ap6s o grafo ser montado, 0 modulo bounds analyzer realiza uma varredura sobre o codigo-
fonte bruto para identificar lagos, chamadas recursivas e padroes de divisao de problemas, como
ocorre em algoritmos de busca bindria ou de ordenacdo por mesclagem (merge sort). Essa etapa utiliza
expressoes regulares e heuristicas simples para determinar quantas vezes um bloco de instrugdes pode
ser repetido ou dividido, gerando dados sobre a profundidade de aninhamento e sobre a presenca de
recursividade.



Figura 7. Representagdo do fluxo da Pipeline no codigo.

export class A ysisPipeline {
private normalizer = new ASTNormalizer();
private irBuilder = new IR der();
private cfgBuilder = new CFGBuilder();
private boundsAnalyzer = new BoundsAnalyzer();
private evaluator = new ComplexityEvaluator();
async analyze(code: string, language: Language): Promise<Analysis> {
await new Promise((resolve) => set eout(resolve, 500));
try {
// step 1: Parse code into AST
const ast = ParserFactory.parse(code, language);

// step 2: Normalize AST into unified IR nodes
const irNodes = this.normalizer lize(ast);
// step 3: Build Intermediate Representation
const ir = this.irBuilder.build(irNodes);

// step 4: Construct Control Flow Graph

const cfg = this.cfgBuilder.buildCFG(ir);

// step 5: Analyze bounds (loops and recursion)

const bounds = this.boundsAnalyzer.analyze(code, language);

// step 6: Evaluate complexity

const complexity = this.evaluator.evaluate(code, bounds, language);

const explanation = COMPLEXITY_EXPLANATIONS[complexity];

OPTIMIZATION_SUGGESTIONS[complexity];

non

const suggestions

return {
complexity,
explanation,
suggestions,
b
catch (error) {
console.error("[Pipeline] Analysis failed:", error);

~

return {
complexity: "0O(n)
explanation:

Unable to complete analysis. Please check your code syntax

suggestions: [“Ensure your code is syntactically correct.”],

i

}
}
}

Com base nessas informagdes, o evaluator (avaliador) combina os resultados das andlises
anteriores para determinar a classe de complexidade Big O. Ele utiliza regras pré-definidas e um
conjunto de constantes armazenadas em uma biblioteca interna (lib/constants). Por exemplo, se o
codigo apresenta um Unico lago simples, o sistema interpreta a complexidade como O(n). Se ha dois
lagos aninhados, ela ¢ classificada como O(n?). Se o padrdao detectado corresponde a uma divisao
recursiva do problema, como em uma busca bindria, o resultado ¢ O(log n) ou O(n log n).

O resultado dessa avaliacao ¢ retornado para a interface na forma de um objeto contendo trés
campos principais: complexity, explanation e suggestions. O primeiro campo traz a classe Big-O
propriamente dita (como O(1), O(n), O(n log n), O(n?) etc.); o segundo apresenta uma explicacao em
linguagem natural, descrevendo o comportamento do algoritmo; e o terceiro oferece sugestdes de
melhoria, como reduzir lagos aninhados ou utilizar métodos nativos mais eficientes.



Figura 8. Codigo representativo em Java para a constru¢do do CFG.

public class Main {
public static void main(String[] args) {
int a = 10;

while (a <= 0) {
if (a == 5) {
System.out.println(a);
}
a += 1;

}

System.out.println("exited");

Figura 9. Fluxograma do CFG em Java.

O: start

1:a=10
2: while: (a <=10)
6: print(‘exited")

0: stop

4: print(a)

Apresentacio de Resultados

Como exemplo de funcionamento, foi testado um trecho classico de codigo em Python com
base na tabela 2, referente ao algoritmo de ordenagao por bolha (Bubble Sort), reproduzido na figura
10. O sistema analisou corretamente a presen¢a de dois lagos aninhados, identificando que o nimero
de comparagdes cresce proporcionalmente ao quadrado do tamanho da entrada. Dessa forma,
classificou o algoritmo como pertencente a classe O(n?). Além disso, apresentou uma explicagdo
descritiva ¢ uma sugestdo de otimizacdo, ressaltando que, embora o codigo seja funcional, sua
eficiéncia ¢ limitada para grandes volumes de dados, podendo ser substituido por métodos mais
eficientes, como Merge Sort ou Quick Sort, representada na figura 11.

Esse resultado evidencia que o sistema cumpre seu objetivo principal: tornar acessivel o
entendimento da eficiéncia de algoritmos de maneira automatica e pedagogica. O Big O Analyzer nao
pretende substituir ferramentas de analise formal de compiladores, mas oferecer uma abordagem
educacional simplificada, voltada para estudantes e desenvolvedores que desejam compreender, de
forma heuristica, o impacto de suas decisdes ldgicas no desempenho do cédigo.



Durante a implementacao, buscou-se equilibrar a velocidade da andlise e a precisao dos
resultados. O uso de parsers simplificados reduziu a carga de processamento e aumentou a
compatibilidade entre linguagens, ainda que isso signifique renunciar a algumas minucias sintaticas.
Na prética, esse compromisso mostrou-se vantajoso: o sistema ¢ capaz de processar trechos de codigo
em milissegundos, mantendo a fluidez da interface, mesmo em navegadores comuns.

Outro ponto relevante foi a utilizacdo de constantes centralizadas, que padronizam palavras-
chave, estruturas de controle ¢ métodos nativos de bibliotecas comuns. Essa escolha facilitou a
manutengdo e ampliou a escalabilidade do projeto. A adi¢ao de novas linguagens, por exemplo, exige
apenas a criagdo de um novo parser leve e o registro de suas palavras-chave correspondentes.

Tabela 2. Evidéncias da Complexidade Assintdtica dos Algoritmos Testados pelo Big O Analyzer

Algoritmo Linguagem | Complexidade | Complexidade | Resultado | Observacoes
tedrica (pior | indicada pelo rapidas
caso) sistema
Busca linear Python O(n) O(n) Correto Percorre todos
em vetor os elementos
do vetor uma
vez; tempo
cresce
linearmente
com n.
Busca bindria | Java O(log n) O(log n) Correto A cada passo o
em vetor espago de
ordenado busca ¢
reduzido pela
metade.
Subset Sum JavaScript | O(2") o2 Correto Percorre todos
(busca 0s
exaustiva de subconjuntos
subconjuntos) possiveis do
conjunto de n
elementos.
Ordenagao por | Python O(n?) O(n?) Correto Dois lagos
bolha (Bubble aninhados com
Sort) comparacoes
sucessivas
entre pares de
elementos.
Ordenagdo por | JavaScript | O(nlogn) O(n logn) Correto Divide o
mesclagem problema em
(Merge Sort) sublistas
recursivamente
e faz
mesclagem
linear em cada
nivel.




Figura 10. Codigo em Python (Bubble Sort).

def bubble_sort(arr):
n = len(arr)
for i in range(n):
for j in range(®, n - i - 1):
if arr[j] > arr[j + 1]:
arr[jl, arr[j + 1] = arr[j + 1], arr[j]
return arr

Figura 11. Resultados demonstrado pelo website apos a analise do cddigo em Python.
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O algoritmo contém iteragdes aninhadas sobre os dados. Cada elemento é comparado com todos os outros elementos.

Sugestoes de otimizagao

. Complexidade quadratica pode ser lenta para entradas grandes. Considere algoritmos mais eficientes ou estruturas
como tabelas hash.

. Para ordenacdo, prefira algoritmos O(n log n), como merge sort ou quick sort.

Entre os desafios enfrentados durante o desenvolvimento, destacam-se as limitacdes inerentes
a analise heuristica. Como o sistema ndo executa o codigo de fato, ele depende da identificacdo de
padrdes estruturais. Isso significa que certos algoritmos que utilizam metaprogramagao, geragao
dindmica de fungdes ou bibliotecas externas podem ndo ter suas complexidades corretamente
inferidas. Entretanto, essa limitacdo ndo compromete o propoésito principal do projeto, que € o uso em
contextos educacionais e exploratorios.

Em termos de resultados, o Big O Analyzer demonstrou consisténcia e clareza na classificagao



de algoritmos comuns, como busca linear, ordenagdo por insercao, busca binaria e ordenacao por
mesclagem. A interface amigével e as explicagdes em linguagem natural tornaram o sistema util para
introduzir estudantes aos conceitos de complexidade assintotica e eficiéncia de algoritmos, de modo
visual e interativo.

Dessa forma, pode-se afirmar que o projeto atendeu integralmente aos objetivos propostos. A
integracgdo entre os modulos, a fluidez do pipeline e a simplicidade da interface reforcam o potencial
da aplicagdo tanto como ferramenta didatica quanto como base para evolucdes futuras. Caso sejam
incorporadas novas linguagens e aprimorados os detectores de recursividade, o sistema podera
oferecer resultados ainda mais completos e precisos.

Em sintese, o desenvolvimento do Big O Analyzer demonstrou que ¢ possivel construir uma
solucdo pratica, acessivel e pedagogica para analise estatica de algoritmos, aliando conceitos tedricos
de complexidade assintdtica a uma experiéncia interativa e intuitiva.

CONSIDERACOES FINAIS

O desenvolvimento deste trabalho demonstrou que ¢ possivel realizar a andlise estatica de
algoritmos com geragdo automatica de complexidade assintotica, atendendo plenamente ao objetivo
proposto na introdu¢do. A criacdo do sistema Big O Analyzer validou a hipétese de que heuristicas
estruturais baseadas em AST e CFG podem ser aplicadas de forma pratica para estimar o
comportamento assintdtico de diferentes algoritmos sem necessidade de execugao do codigo.

A ferramenta desenvolvida mostrou-se eficaz ao identificar corretamente padrdes de loops,
recursdes e estruturas de controle, classificando-os em classes de complexidade Big-O com
explicacdes claras e acessiveis. O projeto também evidenciou a relevancia da integragdo entre teoria
e pratica: conceitos tradicionalmente abstratos da andlise de algoritmos foram traduzidos em
representacoes visuais e interpretacdes automaticas que facilitam o aprendizado e a compreensao de
estudantes e desenvolvedores.

A abordagem adotada conciliou eficiéncia técnica e simplicidade pedagdgica, permitindo
respostas rapidas e uma experiéncia interativa em ambiente web. Além disso, o uso de tecnologias
modernas como Next.js ¢ Monaco Editor proporcionou uma interface responsiva e intuitiva,
refor¢ando o carater acessivel e didatico da solugdo.

Entre as principais contribui¢cdes do trabalho estdo a demonstracdo da viabilidade de se
realizar inferéncias assintéticas sem execu¢do do cddigo, a padronizagdo do processo de analise por
meio de normalizacao entre linguagens e a proposta de um modelo visual de apoio a aprendizagem.
Embora o sistema apresente limitagdes em casos que evolvem metaprogramacao ou dependéncia de
bibliotecas externas, ele cumpre seu proposito principal de forma satisfatoria e abre caminhos para
aprimoramentos futuros.

Como proximos passos, propoe-se a expansao do Big O Analyzer em uma frente
primordialmente técnica. O sistema pode ser evoluido com parsers mais robustos, capazes de lidar
com diferentes estilos de escrita de cddigo, aliado ao suporte a um conjunto mais amplo de linguagens
de programacdo. Além disso, a incorporagdo de heuristicas mais sofisticadas permitira tratar com
maior precisdo cendrios complexos, como o uso intensivo de bibliotecas e casos de recursao indireta,
ampliando tanto a confiabilidade quanto o alcance pratico da ferramenta.
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